Emerson’s Rosemount 1500XA Gas Chromatograph Helps U.S. Refineries Meet 40 CFR Part 63 Requirements. High Resolution Image
Rosemount 1500XA gas chromatograph offers cost-effective flexibility in measuring, calculating, and recording individual component concentrations in flare vent gas
SHAKOPEE, Minn. (September 20, 2017) – Under the impending 40 CFR Part 63 regulations, all U.S. refineries will be required to report the heating value of their flares that are used as control devices for emissions, and Emerson today announced efficient and cost-effective solutions for compliance using the Rosemount 1500XA gas chromatograph.
The new regulations will require that operators determine the concentration of individual components in the flare vent gas within 15 minutes or direct monitoring of the net heating value of the flare vent gas at standard conditions.
According to Bonnie Crossland, product manager, gas chromatographs, Emerson Automation Solutions, “Generally, a plant manager will consider three possible approaches when trying to meet petroleum refinery flare requirements – a calorimeter, a mass spectrometer, or a gas chromatograph.”
A gas chromatograph (GC) provides individual component concentrations with a single calibration gas blend and is a reliable and well-known technology with a reasonable installation and operating cost. Additionally, while there are likely no other calorimeters or mass-spectrometers at the refinery, there are always gas chromatographs on site along with the experienced maintenance and engineering personnel to operate and maintain them.
A calorimeter is a low-cost instrument with a fast analysis time, which sounds very desirable. However, it requires a shelter for outdoor use, which adds significantly to its cost, and most important, it only provides the BTU value and no information on what is happening in the process or what is going up the flare.
A mass spectrometer provides individual component concentrations within the flare with a fast analysis time, but at an expensive price point. Likewise, it typically requires a shelter and can be difficult to maintain, often requiring a calibration gas for every component as well as a multi-component blend. As a result, this can be a high cost-to-function ratio.
“In considering these factors, the GC is really the best solution for meeting this regulation,” said Crossland. “Our 1500XA gas chromatograph offers flexibility in measuring, calculating, and recording the individual component concentrations present in the flare vent gas.”
Emerson is offering two standard solutions using the Rosemount 1500XA with multiple thermal conductivity detectors (TCDs) to meet the requirements of 40 CFR Part 63 Subpart CC (Refinery MACT 1) and 40 CFR Part 63, Subpart UUU (Refinery MACT 2). Solution 1 looks at hydrocarbons, H2S, H2, CO and CO2. Solution 2 is identical to Solution 1 with the addition of benzene detection. Custom solutions that measure, calculate, and record operators’ specific flare compositions are available.
40 CFR Part 63 requires a gas chromatograph to meet performance specification 9 of 40 CFR Part 60 Appendix B accuracy requirements, and perform single mid-level daily calibration checks and quarterly multi-point calibration. The Rosemount 1500XA gas chromatograph’s repeatability has an extremely low relative error rate that’s far below the specified requirements. Analysis, calibration, or validation cycles can be configured to run automatically via Emerson’s exclusive onboard MON2020 software which delivers embedded expert knowledge, helping less experienced technicians interpret diagnostics to resolve process upsets more rapidly. In addition, the Rosemount 1500XA gas chromatograph:
For locations where weather conditions make outside mounting impractical, Emerson’s System Integration Group has designed very cost-effective fully integrated cabinets that can be easily mounted near the sample point for reduced sample lag time and fast installation and commissioning.
More information can be found at Emerson.com/RosemountFlareSolutions.